free Geometry eBooks

Page: 371-380 results of 1689
Focusing methodologically on those historical aspects that are relevant to supporting intuition in axiomatic approaches to geometry, the book develops systematic and modern approaches to the three core aspects of axiomatic geometry: Euclidean, non-Euclidean and projective. Historically, axiomatic geometry marks the origin of formalized mathematical activity. It is in this discipline that most historically famous problems can be found,... more...
This monograph examines in detail certain concepts that are useful for the modeling of curves and surfaces and emphasizes the mathematical theory that underlies these ideas. The two principal themes of the text are the use of piecewise polynomial representation (this theme appears in one form or another in every chapter), and iterative refinement, also called subdivision. Here, simple iterative geometric algorithms produce, in the limit, curves with... more...
This volume contains the proceedings of the International Conference on Number Theory and Discrete Mathematics in honour of Srinivasa Ramanujan, held at the Centre for Advanced Study in Mathematics, Panjab University, Chandigarh, India, in October 2000, as a contribution to the International Year of Mathematics. It collects 29 articles written by some of the leading specialists worldwide. Most of the papers provide recent trends, problems and their... more...
This book is intended for a one year course in Riemannian Geometry. It will serve as a single source, introducing students to the important techniques and theorems while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian Geometry. Instead of variational techniques, the author uses a unique approach emphasizing distance functions and special coordinate systems. He also uses standard... more...
The geometry of the hyperbolic plane has been an active and fascinating field of mathematical inquiry for most of the past two centuries. This book provides a self-contained introduction to the subject, taking the approach that hyperbolic geometry consists of the study of those quantities invariant under the action of a natural group of transformations. Topics covered include the upper half-space model of the hyperbolic plane, Möbius transformations,... more...
This introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sheaves, coherence, and higher-dimensional cohomology. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Each chapter contains a variety of examples and exercises.
A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself... more...
​​​​​​​​​​​​​​​​​​​​ This volume contains the invited contributions from talks delivered in the Fall 2011 series of the Seminar on Mathematical Sciences and Applications 2011 at Virginia State University. Contributors to this volume, who are  leading researchers in their fields, present their work in a way to generate genuine interdisciplinary interaction. Thus all articles therein are... more...
This book consists of the notes from the seminar Bonn/ Wuppertal 1983/ 84 on Arithmetic Geometry. It contains a proof for the Mordell conjecture and may be useful as an introduction to Arakelov's point of view in diophantine geometry. The third edition includes an appendix in which a detailed survey on the spectacular recent developments in arithmetic algebraic geometry is given. These beautiful new results have their roots in the material covered by... more...
Alexander Grothendieck's concepts turned out to be astoundingly powerful and productive, truly revolutionizing algebraic geometry. He sketched his new theories in talks given at the Séminaire Bourbaki between 1957 and 1962. He then collected these lectures in a series of articles in Fondements de la géométrie algébrique (commonly known as FGA). Much of FGA is now common knowledge. However, some of it is less well known, and only a few... more...
Page: 371-380 results of 1689