free Geometry eBooks

Page: 371-380 results of 2151
Building on the success of its first five editions, the Sixth Edition of the market-leading text explores the important principles and real-world applications of plane, coordinate, and solid geometry. Strongly influenced by both NCTM and AMATYC standards, the text includes intuitive, inductive, and deductive experiences in its explorations. Goals of the authors for the students include a comprehensive development of the vocabulary of geometry, an... more...
This volume deals with various topics around equivariant holomorphic maps of Hermitian symmetric domains and is intended for specialists in number theory and algebraic geometry. In particular, it contains a comprehensive exposition of mixed automorphic forms that has never yet appeared in book form. The main goal is to explore connections among complex torus bundles, mixed automorphic forms, and Jacobi forms... more...
This encyclopedia presents an all-embracing collection of analytical surface classes. It provides concise definitions and description for more than 500 surfaces and categorizes them in 38 classes of analytical surfaces. All classes are cross references to the original literature in an excellent bibliography. The encyclopedia is of particular interest to structural and civil engineers and serves as valuable reference for mathematicians.
This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi’s career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kähler metrics and value distribution theory,... more...
The present volume is a collection of a dozen survey articles, dedicated to the memory of the famous Hungarian geometer, László Fejes Tóth, on the 99th anniversary of his birth. Each article reviews recent progress in an important field in intuitive, discrete, and convex geometry. The mathematical work and perspectives of all editors and most contributors of this volume were deeply influenced by László Fejes Tóth.
This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for... more...
This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces. Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely... more...
Across the centuries, the development and growth of mathematical concepts have been strongly stimulated by the needs of mechanics. Vector algebra was developed to describe the equilibrium of force systems and originated from Stevin's experiments (1548-1620). Vector analysis was then introduced to study velocity fields and force fields. Classical dynamics required the differential calculus developed by Newton (1687). Nevertheless, the concept of... more...
This book illustrates the broad range of Jerry Marsden’s mathematical legacy in areas of geometry, mechanics, and dynamics, from very pure mathematics to very applied, but always with a geometric perspective. Each contribution develops its material from the viewpoint of geometric mechanics beginning at the very foundations, introducing readers to modern issues via illustrations in a wide range of topics. The twenty refereed papers... more...
by Sen Hu
This invaluable monograph has arisen in part from E Witten's lectures on topological quantum field theory in the spring of 1989 at Princeton University. At that time Witten unified several important mathematical works in terms of quantum field theory, most notably the Donaldson polynomial, the Gromov-Floer homology and the Jones polynomials. In his lectures, among other things, Witten explained his intrinsic three-dimensional construction of Jones... more...
Page: 371-380 results of 2151