Home > Mathematics > Algebra
Page: 1031-1040 results of 1940
The heart of the book is a lengthy introduction to the representation theory of finite dimensional algebras, in which the techniques of quivers with relations and almost split sequences are discussed in some detail.
This unique book is devoted to the detailed study of the recently discovered commutative C*-algebras of Toeplitz operators on the Bergman space over the unit disk. Surprisingly, the key point to understanding their structure and classifying them lies in the hyperbolic geometry of the unit disk. The book develops a number of important problems whose successful solution was made possible and is based on the specific features of the Toeplitz operators... more...
The subject of this book is the action of permutation groups on sets associated with combinatorial structures. Each chapter deals with a particular structure: groups, geometries, designs, graphs and maps respectively. A unifying theme for the first four chapters is the construction of finite simple groups. In the fifth chapter, a theory of maps on orientable surfaces is developed within a combinatorial framework. This simplifies and extends the... more...
The CliffsStudySolver workbooks combine 20 percent review material with 80 percent practice problems (and the answers!) to help make your lessons stick.CliffsStudySolver Algebra I is for students who want to reinforce their knowledge with a learn-by-doing approach. Inside, you’ll get the practice you need to tackle numbers and operations with problem-solving tools such asStraightforward, concise reviews of every topicPractice problems in every... more...
This book takes a theoretical perspective on the study of school algebra, in which both semiotics and history occur. The Methodological design allows for the interpretation of specific phenomena and the inclusion of evidence not addressed in more general treatments. The book gives priority to "meaning in use" over "formal meaning". These approaches and others of similar nature lead to a focus on competence rather than a user’s activity with... more...
This text gives a basic introduction, and a unified approach, to algebra and geometry. Alan Beardon covers the ideas of complex numbers, scalar and vector products, determinants, linear algebra, group theory, permutation groups, symmetry groups, and various aspects of geometry including groups of isometries, rotations, and spherical geometry. The emphasis is on the interaction among these topics. The text is divided into short sections, with exercises... more...
Learn the basics of algebra from former USA Mathematical Olympiad winner and Art of Problem Solving founder Richard Rusczyk. Topics covered in the book include linear equations, ratios, quadratic equations, special factorizations, complex numbers, graphing linear and quadratic equations, linear and quadratic inequalities, functions, polynomials, exponents and logarithms, absolute value, sequences and series, and much more! The text is structured to... more...
The book describes methods for working with elements, subgroups, and quotient groups of a finitely presented group. The author emphasizes the connection with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, from computational number theory, and from computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms are used... more...
This book provides an introduction to quadratic forms, building from basics to the most recent results. Professor Kitaoka is well known for his work in this area, and in this book he covers many aspects of the subject, including lattice theory, Siegel's formula, and some results involving tensor products of positive definite quadratic forms. The reader should have a knowledge of algebraic number fields, making this book ideal for graduate students and... more...
Some of the most beautiful mathematical objects found in the last forty years are the sporadic simple groups. However, gaining familiarity with these groups presents problems for two reasons. First, they were discovered in many different ways, so to understand their constructions in depth one needs to study lots of different techniques. Second, since each of them is in a sense recording some exceptional symmetry in spaces of certain dimensions, they... more...
Page: 1031-1040 results of 1940
DISCLAIMER: None of the files shown here are actually hosted or transmitted by this server. The links are provided solely by this sites users. The administrator of this site cannot be held responsible for what its users post, or any other actions of its users. You may not use this site to distribute or download any material when you do not have the legal rights to do so. It is your own responsibility to adhere to these terms.